m -t e e - - . - . ot sy i . enewnr -.1!1.113.__:cl.l:ll«l-‘_._nlll!clwnil.:iilc_ul.‘.!. 4wU| E e A aRTrrwenty ._..ﬂl.l,Ju.i....
; . o R
(P T _ R P
| P "
1 = m. . b
p N Jou i e ! Ve
1 : ! N
! ! : |
d 3 o _ i -
— - W L
- ZzZ e | 3 B
N E LB i P i
U 0 —
gge @ O | )
_ e U w _ _ m 2 .
] ' ! i [
B O & X w . _ .
o | T = 0 M : M
| 7T m .
O < = | S |
— - B ' .
B Z = 3 B R
; E E m H 1 oo T t - nw.ﬂul o atn bt enn e -
® “ o o2 ; 8 DR T £ H
7 . i SR Sl et
i Ly H -
4 K- S “
W_ 3 _. “ _
. : ;
W ’ “ i M
< ) " : “
0 .
m. ' !
; d
i . % :
- 0 i 5
g 1 . Jm., : . _r L R NIV I - - : A
) . i F N : , . 1
. _ R R - RS SR D il H
| | _ “
ik . N
. H 3 m 4
;_“. L T
i : 3 -
SN Lo SHAIRE.




APPROVED FOR PUBLI C RELEASE
UNuvinJJiltuww

e = T TR
greT T TN Lt
R g n';‘?ﬁ"&‘
£ n lu"l’i*\ged

Classif igatio

LOS ALAMOS SCIENTIFIC LABORATORY — “KePO™ e
of the

UNIVERSITY OF CALIFORNIA

VERIFIED UNCLASSIFIED

Report Written: 7— ;0.7 k? M ‘LA-1321
o .

November 1, 1951

This document consists of 22 pages

TAYLOR INSTABILITY ON CYLINDERS AND SPHERES IN
THE SMALL AMPLITUDE APPROXIMATION

Report Written By:

Work Done By:

Gaeorge I. Bell Goorge I. Bell

PUBLICLY RELEASABLE
PerZ. FSS-16 Date: _fp cb/2)
By, ' CIC-14 Date: _2-2/-9%

E ‘L‘/Xw - "\/‘v\o\Ux\

L

§=5
~=© ) B .
= |

=5 “pn——

(030 = . o’

=0 ‘

= - /

e

s Q3 _ [ed o Tre P
== o ¢ : -
=" o |

|

o UNCLAS”H[U

by ' b,
gt T2

APPROVED FOR PURLI C REI FASE



ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov



APPROVED FOR PUBLI C RELEASE

Distributed:  DEC 13 1951 - LA-1321
Washington Document Room 1-7
J R. Oppenheimer 8

Los Alamos Report Library 9-30

UNCLASSIFIED

APP | C RELEASE




APPROVED FOR PUBLI C RELEASE

T |y | ASSIFIED

ABSTRACT

We consider the growth of & small ripple on a cylindrical or
spherical fluid surface which is subject to arbitrary radlal mo-
tion. Differential equations for the amplitudes of the ripples
ag functions of time are derived under the assumption that the
motion is irrotational and of amplitude small compared to the wave-
length of the ripple. The liquid may be compressible. Two
further assumptions prove convenient though not necessary, namely:
that the wavelength of the disturbance is small compared to the
thickness of the cylindrical or spherical shell, and that the den-

sities of the fluids bordering the shell are negligibly small.

i
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Ve derive the equations in & very simple maxmmer. Since the mo- -
tion is irrotational, there exists & velocity potential, @, which
satigfies laplaces' equation, V2¢ = 0, 1f the matter is incompres'-
sible, or, for compressible materiel, ¢ satisfies a Polsson type
equation, {7 2¢ = - F/ P. [Note: throughout we take U¢ = ? and
not the more customary -V ¢ = ¥ -] We then invoke Bounda.ry con~-
ditions at the surfaces of the shell to determine ¢. From the -

equaticns of motion

2
-g.% + %(—g-g-) = constent, (1)

the differential equations for the development of the ripple emerge
directiy.

A note on the large amplitude case is appended. Modifications
for thin shells are also noted.

I. CYLINDRICAL SURFACE, INCOMPRESSIBLE FLUID

In cylindrical coordinates (r,e, z) the equation va¢ = 0

hes the fornm
3295 92¢ 1 ¢ 1 22
+ + i‘- 3—; + ——2- = 0, (2)
22 or r~ 26
If ¢ is independent of 2z, O:

“h- : R .
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If ¢ is independent of z:

A

¢ = (_E + Bark) cos k O, (%)
r .

(Ve igmore the sin k © solution as adding nothing new.) If ¢

is independent of ©:

§ = (A3J°(ikr) + B Hgl)(ikr)) cos k z. (5)

3

In general we may have

¢ = cos k © cos 48z, (ikr),

with 2 ) oy Bessel finction of order -£ ; but as computation with
arbitrary £ would be tedious, we have taken our ripple independent
of © or z always. Presumebly ripples independent of © are of
greatest physical interest.

a) Ripple on Inside Surface Independent of s

Let the position of the unrippled surface be given by Ro(t).
This corresponds to what comes out of a SFAC calculation. Let the
actual rippled surface be gilven at any time by Ro(t) +b(t) coB k o,

Owr problem is to £ind b(t) 4in terms of R, Ry, Ry, and k.

We demand that V2§ = 0 and that

_a__é) = R+ bt k ©. 6
(arnoﬂa(t)coske 0" (%) ece (6)

For the other boundary condition, we should presumably consider

the outer surface, Rl(t), and demand that a¢/ar)R = Ry. However,
1

INCLASSIFIED
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1f (RO/R}.)ak 1s emall compaved to ome, this amounts to setting
B, = 0 in equation (). Thus we merely demand that the distur-

bahce due to the ripple decrease at large r. These three condi-

tions are satisfied by

1'2 Rk+l
[ ] - o o
¢=R R lnr - (b(t) + b(t) ﬁ;) -

= cos k o, (7)
r

‘Since this 1s e small amplitude approximation, we always ignore

squares of b(t). We see that

. k+l
28 . 3’. + (b(t) + (k) ) 2 cos k6
or T o rk+?.
go that
3 o iy Ro
(52) a THEH ED + b(t) cos k © + b(t) g-cos k @

* r=R0+b(t)cos ko )

Ro

= R+ b(t) cos k 6.

Thus we sece that ¢ satisfies the requirements. To get the equations

of motion

Rk+l

--Qalnr[R + Ry RI-b(t) °k cos k ©
kr

. iy R]; k+l lééo

- b(%) RO;—-Ecoske- b(t) T cos kO
r

k ‘2 k-l

R RS+ kR R
- o(t) [ 2 e .0 | cos ke,
kr

The equations of motion have the form

) 2
‘%"3‘%*%“}% + F(t).

UNCLASSIFIED
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URVANIITY VOW

At the interface p 1s taken to be a constant, independent of €.
Equating the terms independent of © at r = Rj + b{t) cos k O,
ve have merely a first integral of the equation - %—E— = Pr, How-

ever, equating the terms proportional to cos k © and using
b(t) cos k ©
R ?
(¢]

1n(R°+b(t) coske)alnRo+

we have:

kbt .2 L X J L ] L] L § L ] L]
0 = ——ﬁi—l[R°+RoRo] - b(t) R, - b(t) R, - (k1) b Ry

2
s Ro L ] L]
- b(t) Ry - k b(t) ﬁ: + k v(t) R, »
vhence
(k~1.) b(t) 'éo -.ﬁ(t) R, - 2 ‘l;(t) I.io = 0 (8)

This 18 the differential equation for b(t). It is easily inter-
preted in simple cases. If the wavelength of the disturbance is small
compared to the radius of curvature, R,y Ome expects the solution for
a plane to emerge. The wavelength, ‘. Ro/k, and for R>> Ave may

write our equation as

1 v(t) .z; -'t;(t) - 25(1-.) fﬂn 0
N o R,
The last term will usually be unimportant for large Ry and the

plane sclution
+\/RO/‘1~ 4

b(t) = e

is, indecd, formally valid.
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The last term in (8) is peculiar to the cylindrical motion. Its

influence is casily seen for Ro = O, With a ripple on &n unacceler-
ated plane, one has b(t) = b, + b;t. On the cylinder the solution of

b/

(8) 18 b(t) = §2 + bJ’_. We note that the mass of the material displaced
(o)

in the ripple is proporti\enal to DR o B89 that the displaced mass be-
haves as 'bo + 'blt s Just as 1n the plane case. This suggests that
the equations in Iagrangean coordinates might be simpler.

Equation (8) takes on a much simpler form when the substitution

b(t) = c(t)/R, is carried through:

k c(t) Eo - 'c.(t) R, = 0

(8a)
b(t) = c(t)/Ro.
Ve see that the growth of the amplitude c(t) is Just that for a plane
ripple of variable wavelength. .
If one wished to derive the differential equation for a ripple ampli-
tude when the densities of the media or elther side of the interface are
camperable, then one would have to set down the velocity potentials in

both media. One would infer from Taylor's treatment thet this would
P.=~

lead to sonething like multiplylng the first term in (8a) by e where
12
Pl end Pa are the densities.

b) Ripple on Outslde Surface Independent of z

The method goes exactly as before. Now

L] L ) R k
¢ - R, Ry :ln.r+%(b(t) + b(t) ﬁ-z-) ;11';:1' cos k © (9)
) (¢}

Bw

Y TS, -
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leads to

b(t) (k+1) ‘fzo + °{(t) R, + 2 'z':(t) fxo = 0, (10)

If we substitute b(t) = c(t)/Ro we £ind the convenient equation

k ¢(t) '1;0 +‘c'(t) R, = 0; (féa)

and the interpretation is just as before.

c¢) Inside Ripple Independent of ©

(l)(i kr)

¢-R?lnr+f(b(t +b(t)—-)coskz—(—y——— (11)
Hy (L Ry

Recause of the involvement of the Bessel functions, the resulting 4if-

ferential equation is more complicated:
L] * R2° ' (1]
k b(t) R, + k b(t) ﬁ;— + b(t) k Ry

3 L)

(4) (8) 22 + b )R° g
b(t 2 b t) 5= + b(t
¥ § * Ro " } H(i)(i k Ro) (12)

2 (1) 2
.o RS Y - [HY/(L kR
+ {# Ry b(t) + k b(t) ﬁQ-} { 01 ( o ] a 0.
o). H§ )(1 k Ro)

In many practical cases one will have k Ro:i> 1, in vhich case we have

Hgl)(i k R)

SR SN I SN
Hil)(i k R,) ek R, 8(k R)®
Hc(al)(i kRo) | 1 1 - 1
= -1 + - + - - -
Hglj(i k R_) KR 2 g2

Using these expemsions, we find to lowest order in  1/k R:

NCLASSIFIED
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wr ww -

L) .2
fe (] * R
-b(t) + b(t) kR, - b(t) = + b(t) -5 = 0. (13)
° Ro R
é o
In the plane approximation, ﬁg = O, and the proper behavior,

kRo t

LN J / ,
b(t)~e s prevails. VWhen R,= 0, b(t) = bo/Ro + b} R, which

allows R b(t) to behave as b, + byt + b2t2. Just why the quad-
ratlc time behavior arises is not at present understood. FHere the

substitution c(t) = Rob(t) leads to

%o
RO

c(t) k R~ c(t) + c(t) =2 = 0 (132)

The solution to this for R,= O can also be written c(t) = cy *

R d .

To the next order in 1/k R,, we have

(1) oo . R
<b(8) (1 - Fpp) + B(6) KR, (1 - 5) - B(t) 2
: o o
;2 (k)
(¢] 1
+ b(t) ;g [l - E_RT)] a 0,
o *
d) oOutside Ripple Independent of ©
Here the velccity potential
. R J(Lkr)
i o 0
¢ = RO RO Inr + £ <b(t) + b(t) ﬁ;) cos k z W (15)

yields the differential equation:

-

UNCLASSIPIED
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k éo {a(t) + k b(t)

I (1 kR) (1"6)

. R
+1(b(t)+2b§—+b(t) O) ——(i.—k-ﬂ

2
2 .
.. R J (L kR))
+ (xR, v(E) + kb(ﬂi)(,{(i kRZ)> =0

The appropriate expansions for large k R are:

o (ikR)

ﬂ-—-(———-—yikR 1R + 3 2 ¥ eee
o 8(k Ro)
J(ikR) 1
(J(i“) ,-(1+ +k232+...),
end we have the lowest order :I.n 1/xr .2
B(t) k R, + b(t) +b(t)-—-b(t)—§ -0. a7)
o O
é
c(t) k R + c(t) - c(t) = =0 (172)
0
To next order we have
b(t) k R F1+-k—-—-l ]+.1.>(t) 1+§—-—-l 1+ 't.’(t)i'-‘
°t Ro [ k Ry Ro (18)

"2
-b(t)E% [2+ g5 ] = o
R o

o

II. CYLINDRICAL SURFACE, COMPRESSIBLE FLUID

Now the velocity potential no longer satisfies §72¢ = O,

but rather ‘72 @ = - PP . Let us first consider the simple

case -fP/P = F(t), 1. e., independent of position within

o a— LSS
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the fluid. A velocity potential of the form-

2
. R 2
¢ =1nr [Ro o "5 F(ti] + = F(%)

satisfies (72¢ = F(t). The radiel velocity is then

X 2 2

R R R r
Q [+]
V= offr = 2 (S ) F(t).

-

To see that this is the correct form let Ro = 0, in which case
2 2

. - RS
V. = P/P 5= .

But 2Trr,0V} is the flux per unit length through a cylindrical sur-
face at r. Also ’Nﬁ(Ri - r2) is the rate ofchange of mass per unit
length inside a cylindrical volume of radii Ro and r. Hence Vr is
indeed the correct value to insure continuity.
One can now devise a velocity potential ¢ which setisfies
1 %5, 2 29 o
Rob(t)coa k,

. o e
= R, + b(t) cos k, , and
3) has a disturbance which for an inside ripple decreases for increas-
ing r or for an outside ripple decreases for decreasing r.
One cannot, under the present theory, take into secount variations

of density with r inside theliquid. There is no difficulty in find-

00
ing solutions of vg¢ = Z r, E (t) = F(r,t) and incorporating
o]

these solutions in the equations of motion to find the differential
equation for b. The difficulty arises from the fact that in a small
amplitude theory, only the value of F and % near the interface

(r = Ro) can affect the solution. Physically one would expect that

an initial ripple of the form cos k 6 in material of uniform density

APPROVED FOR3BUBLI C RELEASE"'t‘ ALSitied
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could not maintain this form if one portion of the material"’ were
compressed. BSince our formalism allows only ripples of form cos k 6,
it must be unaffected by variations of P with r at R,. A1l
thie emerges if one carries through the theory with F(r, t). Per-
haps by teking a more general form of F, involving 6, one could

improve this.

a) Inside Ripple Independent of 2

Our three conditions are satisfled by

o

2
F(t)] - EE F(t) +

l'\),’:d

§o-dar [R5 - (19)
o Rk-o—l

. R_
+ £ [B(6) + v(t) gz- - b(t) F(t)] cos k6 _Ek._ .

The differential equation for b(t) becones
0 LN J L ] [ a
(k-1) b(t) R, - b(t) R, = 2 b(t) R, + 5% @ R, F(t)) = 0. (20)

The substitution b(t) = c(t)/PRo leads to the simpler equation

X
R
0o

e(t) BB, - ele) + e(x) £ = 0. (200)

Here, of course, we have used F = -F/P. 1If R = 0, the solu-

t
tion 18 c(t) ey * cl/ P(s) ds.
o

UM.cussL{mn
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b) Outeide Ripple Independent of 2z
2

| . R 2
¢=1nr[R°Ro-§-F(t)] + = F(t)
(21)
+ 1[:£(t) + b(t) Eg - b(t) F(tﬂ ’EEI cos k ©
k By Ro'
leads to the equation
b(t) (k+1) é; + ﬁ(t) Rg + 2 i(t) ﬁo - 1§E (Fov RO) = 0, (22)
In terms of c(t) = P(t) Ro(t) b(t), this becomes
EE oo . b
c(t) -R—o- R, + c(t) - c(t) <= 0. (228)
c) 1Inside Ripple Independent of O
2
. R 2
g=1inv[R R -5 F(t) +i—F(t) (23)
23

+ & [ o) + v(t) oo b(t) F(t)] cos k= Hgl)(i k)
E Ry Hlm(i k R,)

anns S

leads to the equation: .2
R

1 . . -2 oo - .
s b(t) R, + k b(t) R + o{t) k R, - k d(t) R, F

. R R R )N kR
+i§b(t)+2b(t)§3+b(t)§9-bF-Fb-bF—9- ° °
Q o RO

2l
H](_l)(i k Ro) (20)

2

é2

-v . o .
J[LROb+kbﬁ—;—kb(t)RoF]aO.

1
. [Hg )(i kR_)
HJ(_l)(i k R_)

S UNCLASSIFIED
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For k R>>1, we use the asymptotic expansions on page 9 and

£ind: " |
() + b(t) kﬁ - b(t) R—— + b(t) R—g ¥ -9%; b(t) F(t) = 0.
o o (25)
The substituting b(t) = c(t)//o(t) R (t) gives
c(t)k.;o - :(t) re (g + ;E) = 0, : (252)

80 that in this case also the compressibility lea.ds to a term ¢ P/P

The solution for R, = 0 d1s now c(t) = cy + Cy fp(s) R (s) ds.

d4) Outside Ripple Ipdependent of ©

. R 2
$=1nr [R R -5 F(t)] + f= F(t) )
ir- iao ‘ J (1 k r) (26)
+E[b(t)+b(t)§;-b(t) F(t)] cos k z LUER
leads to
{?2
X b(t) éo+kb(t)R—° +o(t) kR, - kb(t) R, F
e ]
+1S"6(t) 2‘;’)(t)f-{9- b(t .é° b(t b(t) F - b i?°2
2 + Ro+ )h—;- )F-()F-(t)Fﬁ-;S
2 .2
J (1 kR ) S kR ] .. Ry, ' .
k b(t) R. + k b(t) == - X b(t) R_ F|= O.
3, (4 & R) T LA ER, [ 30 Ry + ()Ro ( °]
(27)

For kR >51 we use the asymptotic expansion on page 11 to find:
]'?2

B(t) + b(t) k 'r%o + B(t) ;2 - v(t) —g -b(t) F - b(t) F(t) = 0.  (28)
(o} RO
u ussmw
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In this case the substitution b(t) = c(t)%(t) Ro(t), leads to

.

. R
c(t) k.}'io-v- c(t) - ¢ (§+ f{g = 0.
o

t
Again for ho =0, c(t) = ¢ +cy Jf p(s) r, (s) ds.

o)

III. SPHERICAL SURFACES

We wish solutions of §72¢ = 0 jin spherical coordinstes. To
avold confusion we call the azimuthal angle ¢, instead of the customary
@ which we reserve for the velocity potential. If ¢ is independent
of o, ¢

g(r) = Ay % +B. (29)
If ¢ is independent of Y :

¢ = (Ar’e + B r-[.l

) Pz (cos ©). (30)
For genetal @,

g = (Arf+B r'l'l) PE {cos ©) cos m w.
In developing our formulae we shall take m = O for it seems likely
that any sphere will have an axis of symmetry. Also the radial de-
pendence of ¢ is independent of m, 80 there is no real loss of gen-
erality as those results which hold for a ripple proportional to
Pg (cos ©) will hold as well for a ripple proportional to I:Zl (coso)

cos m .

The equation v2¢ = F(t) has a particular solution

2
¢ == F(t). (31)

oy U CLASSIHED
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We are now in a position to proceed exactly as before.

a) Inside Ripple Incompressible

2 - . 242
S R 2R b R o
¢ = - °r ° 'Zi:T (‘b'(t) + RZ) :};T Pé(cos 8). (32)

LI

This function satisfies U 2¢ = 0 and the boundary conditions, for

) s +5(6)0y (e08 ©) = Ry + B(t) 5, (cos ©).
Ve obtain:
b(t) R (£-1) - b(t) Ry - 3 B(t) R, = O. (33)
We try the substitution b(t) = c(t)/Rz to obtain
c(t) §°'4%§ - e(t) + e(t) ;3 = 0. | (338)

The simplification is not marked, but the equation strongly resembles
our previous ones suggesting that the factor R'2 in the substitution

is correct for spheres. For R = 0, c(t) = C, + € fR (s) ds.

b} oOutside Ripple Incompressible

2:
B R 2R b(t), L2
$= - = 2 4 7 (B(t) + R ) T'I P£(coa 8). (34)
This gives .
L4 . R
b(t) Ry S22+ B(t) + 3 2 = 0. (35)
‘o 0

In terms of c(t) = Ro b(t), this is:

R

c(t) R &+ &(t) - &(t) g2 = 0. (358)
) o .

-17-
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c¢) Inside Ripple Compressible
3

. R . 2
6« [ Rg g ¥ PO+ - F(E) (36)
3 £+2
. 2rR_ b(t) R
1
- '(arl')[b(t,) + | °R° - b(t) F(‘b)l ;Eﬁ )lfz(cos o)

leads to ¢

b(t) R (£-1) -'b(t) R -3 B(t) Ry + -;% (r,(t) b(t) F(£)) = 0. (37)

The substitution b(t) = c(t)/RiF produces

R -
o) R EE - 8(x) + &0) (GG +5) =0
(o) 0

which 18 the form we by now expect.

d) Outside Ripple Compressible
3

R 2
§=L-R R, + 0P +EF(E) (589
2R b(t)
1 o r
+I[b(t) + —-ﬁ-;—- -b f(t)] "Rz‘:I %(COS e)

b(t) R, é;?_ + b(t) + 30(t) ;-;3 - -%— % (R (t) v(t) F(£)) = 0. (39)
0 (e} o]

Vhen we substitute b(t) = c(t)/RiP we f£ind

»

c(t) 'éo ﬁ:ﬁ + &(%) - &%) é—° + £> =0 (392)
(o] (o)

k. e S
1 "0 S

UNCLASSIFIED
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When the final formulae are collected as expressed in terus of the
proper c(t) s, great regularity is noted. ]En the following tables
"In" denotes & ripple on an inside surface,'Out" denotes a ripple on an out-
side surface, z(or ©) means the ripple is independent of z(or 6), I de-

notes incompressible and C denotes compressible.

TABLE OF FORMULAE

CYLINDERS .
R
In 2 I b = c/R ke R—° -%=20 (82)
o]
.éo
Qut z I b = c/Ro ke 2=+ ¢ =20 (10a)
(o]
) Ry
In ) I b = c/R ke Ry - €+ Cg-=0 (132)
° KR 1
e . Ro
Out e I b= c/R0 ke R, + € - ¢ §; = 0 (17a)
In z c b= c/PRo ke 7= - ¢+ ¢ -é— = 0 (20a)
[s]
R, . . 5
Out z c b = c//"R0 ke ==+ c~-c =0 (22a)
o
.o Ry 5
In G c b = c/PR ke R;- ¢+ ¢ (—R-;- + ,3> = 0 (25a)
) KR1
R »
= o .o - . _‘9- e .
Out ) c b c/PRo ke R+ € - ¢ (RO + p) 0 (28a)
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NOTE ON LARGE AMPLITUDE APPROXIMATION

Taylor's theory and experiments indicate that for ripples on a plane
fluid surface subject to a constant acceleration of ~ 5039, the amplitude
grows exponentially with time until b(t)~ .4 eafter which it approaches
& constant velocity approximately given by 01/33§7§' where & 1is the
acceleration and Cl is a number slightly larger than unity. If one were
to extrapolate this to cylindrical and spherical surfaces subject to much
greater accelerations, one would probably assume that c(t) increased ac-
cording to the small amplitude theory up to c(t)~.4 > after which time
c(t)—> Cl\/53:7*. It follows that at any given time that ripple is de~
veloping most rapidly which is Just reaching the end of its exponential
phase. As the acceleration, ripples of longer wavelength, will catch up
with and devour those of smaller wavelength and roughly the most dangerous
waves would be those which at that instant were reaching the end of their

exponential or smell amplitude growth.

NOTE ON THIN SHELLS

when the wavelength of the disturbance is of the seame megnitude as
the thickness of the shell, we expect some modifications in esmplitude
growth, G. I. Taylof* has analyzed this problem in detail for a plane
slab of liquid under constant acceleration. He finds that the ripple
will appear on both surfaceg even if initially one surface is completely

flat. If we confine our attention to ripples which have grown to many

%}

Proc. Roy. Soc. A 201, 1950, page 192 (especially equations 27 and
28). -
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times their initial amplitude, we find that the ripples on both surfaces
heve the same time behavior as one would calculate for a ripple on the
unstable surface of a thick shell. The amplitude of the ripple on the

1
ungtable rface is times eater than before,but. because
sta surfa z:;:§E7;: grester than be 3 :

of the ripple on the stable surface, the thickness of the liquid is
greater than before, i. e., the decrease in its thickness 1g less by

the factor

1o /7

l-e-gh: »
Here h is the initlal liquid thickness, A the disturbance wavelength.
This tells us that a disturbance long comrared to the liquid thickness
may grow to a substantial amplitude without greatly thinning the material
shell. If one is interested in the time at which rupture of the shell
is likely, it appears'that specific thin shell effects are not very im-~
portent.

For cylindrical and spherical shells, one might expect the same

conclusions to hold, slthough different factors will be involved.
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